Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561152

RESUMO

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Assuntos
Caproatos , Clostridium , Fermentação , Anaerobiose , Caproatos/metabolismo , Clostridium/metabolismo , Reatores Biológicos
2.
Bioprocess Biosyst Eng ; 47(3): 417-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424249

RESUMO

The anaerobic treatment of sulfide-containing organic wastewater (SCOW) is significantly affected by pH, causing dramatic decrease of treatment efficiency when pH deviates from its appropriate range. Fe0 has proved as an effective strategy on mitigating the impact of pH. However, systematic analysis of the influence mechanism is still lacking. To fill this gap, the impact of different initial pH values on anaerobic treatment efficiency of SCOW with Fe0 addition, the change of fermentation type and methanogens, and intra-extracellular electron transfer were explored in this study. The results showed that Fe0 addition enhanced the efficacy of anaerobic treatment of SCOW at adjusted initial pH values, especially at pH 6. Mechanism analysis showed that respiratory chain-related enzymes and electron shuttle secretion and resistance reduction were stimulated by soluble iron ions generated by Fe0 at pH 6, which accelerated intra-extracellular electron transfer of microorganisms, and ultimately alleviated the impact of acidic pH on the system. While at pH 8, Fe0 addition increased the acetogenic bacteria abundance, as well as optimized the fermentation type and improved the F420 coenzyme activity, resulting in the enhancement of treatment efficiency in the anaerobic system and remission of the effect of alkaline pH on the system. At the neutral pH, Fe0 addition had both advantages as stimulating the secretion of respiratory chain and electron transfer-related enzymes at pH 6 and optimizing the fermentation type pH 8, and thus enhanced the treatment efficacy. This study provides important insights and scientific basis for the application of new SCOW treatment technologies.


Assuntos
Sulfatos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Sulfetos , Concentração de Íons de Hidrogênio , Esgotos/microbiologia
3.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399418

RESUMO

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Camundongos , Bactérias , Citrobacter , Infecções por Enterobacteriaceae/microbiologia , Mucosa Intestinal/microbiologia , Mamíferos , Monossacarídeos , Ácido N-Acetilneuramínico
4.
Chemosphere ; 337: 139395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399993

RESUMO

Dyestuff wastewater and pharmaceutical wastewater have become typical representatives of water pollution. In this study, a novel nano-silica-biochar composite (NSBC) was synthesized based on corn straw as raw material, by a combination of ball milling, pyrolysis and KOH activation. The modified biochar with rough surface had higher specific surface area (117.67-132.82 m2/g), developed pore structure (0.12-0.15 cm3/g) and abundant surface functional groups (-OH, -COOH, Si-O and aromatic CC were dominated). These provided abundant active sites for the adsorption of pollutants. The adsorption capacities of NSBC for Methylene Blue (MB) and Tetracycline (TC) were both higher than that of other similar products, the maximum adsorption capacity of Langmuir were 247.22 and 86.95 mg/g, respectively. After five adsorption-desorption cycle experiments, the adsorption capacities of NSBC for both were still excellent, reaching 99.30 and 19.87 mg/g, respectively. Due to the different structure and molecular size of MB and TC, the adsorption capacities of NSBC were significantly different, especially the influence of solution pH value. The adsorption mechanisms were comprehensively discussed by FTIR and XPS of the samples before and after adsorption, and combining experimental results of BET and simultaneously, which were manifested as monolayer chemisorption, specifically surface complexation, hydrogen bonding, n-π/π-π conjugation, electrostatic interaction and pore filling.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Dióxido de Silício , Águas Residuárias , Adsorção , Carvão Vegetal/química , Antibacterianos , Tetraciclina/química , Poluentes Químicos da Água/química , Cinética
5.
RSC Adv ; 12(32): 20983-20990, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919155

RESUMO

In this study, the effect of pH shock during the treatment of sulfate-containing organic wastewater was investigated using an anaerobic fermentation system reinforced with graphene oxide (GO)/iron series systems. The results show that the anaerobic system with the GO/iron series systems exhibited enhanced resistance to pH shock. Among them, the GO/Fe0 system had the strongest resistance to pH shock, the systems of GO/Fe3O4 and GO/Fe2O3 followed close behind, while the blank system performed the worst. After pH shock, the CODCr removal rate, SO4 2- removal rate, and gas production of the GO/Fe0 group were significantly improved compared with those of the control group by 51.0%, 65.3%, and 34.6%, respectively, while the accumulation of propionic acid was the lowest. Further, detailed microbial characterization revealed that the introduction of the GO/iron series systems was beneficial to the formation of more stable anaerobic co-metabolic flora in the system, and the relative abundance of Geobacter, Clostridium, Desulfobulbus and Desulfovibrio increased after acidic and alkaline shock.

6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625492

RESUMO

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos/imunologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucinas/análise , Tecido Linfoide/citologia , Tecido Linfoide/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Tretinoína/metabolismo , Peptídeo Intestinal Vasoativo/genética
7.
Curr Opin Microbiol ; 63: 76-82, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34243134

RESUMO

Enteric bacterial infections impose a significant and global health burden on society, and their threat is increasing in concert with a rise in antibiotic resistance. There is thus a great need to quickly develop new antimicrobial treatments and interest is growing in targeting pathogen nutrition and metabolism. In this review, we highlight recent research on the metabolism of Citrobacter rodentium, a murine-specific relative of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). We focus on the mechanisms by which C. rodentium acquires nutrients as well as the distinct metabolic strategies that C. rodentium employs in varying spatiotemporal niches. We propose that identifying and targeting nutrients found essential for bacterial pathogenesis is an attractive anti-microbial approach in the new post-antibiotic era.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Escherichia coli Enteropatogênica , Animais , Citrobacter , Citrobacter rodentium , Refeições , Camundongos
8.
Bioresour Technol ; 315: 123798, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32707501

RESUMO

A bioelectrochemical system (BES)-based trickling filter (TF) reactor was utilized for wastewater treatment. At a COD load of 1.0 g-COD/L/day, effluent chemical oxygen demand (COD) and total nitrogen (TN) were 115 and 108 mg/L, respectively, which were allowed for discharge. Superior performance was achieved at 0.5 g-COD/L/day with a circulation rate of 8 L/h, and both COD and TN removal were >98%. Coulombic efficiency was 11% at 1.0 g-COD/L/day and at most 16% at 0.5 g-COD/L/day. COD removal decreased when the BES was removed, demonstrating that BES improved COD removal capability. In anodic biofilms, exoelectrogenic, facultative, nitrifying, and sulfate-reducing bacteria could coexist. Geobacter for current generation grew inside the biofilm, and bacteria in the middle and outer layers consumed oxygen and degraded organic matter and nitrogen. This BES-based TF reactor may be used for efficient and cost-effective COD and TN removal at high loads without excess sludge removal.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Biofilmes , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Esgotos
9.
Chemosphere ; 256: 127092, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32559887

RESUMO

Although nitrogen removal from wastewater is essential to prevent eutrophication, the biological processes employed to this end are characterized by several disadvantages, including high energy consumption and the production of large quantities of sludge. Thus, in this study, the organic matter and nitrogen removal efficiencies of the new sulfate reduction, denitrification/anammox and partial nitrification (SRDAPN) process were examined using an anaerobic-anoxic-oxic biofilter reactor. The results showed that the organic matter removal efficiency of the new process at loading rate 1.0 kg COD/m3 per day was 97%. With a circulation flow from the oxic to the anoxic column that was 3 times influent, the nitrogen removal efficiency of the sulfur denitrification and nitrification (SRDN) process without anammox, was 66%, while that of the SRDAPN process with anammox was 76%. Additionally, nitrogen consumption by the anammox reaction in the anoxic column was 13.8% for nitrite-nitrogen and 10.5% for ammonium-nitrogen, and the withdrawal of excess sludge was not required throughout the 170 days of operation. Microbial community analysis showed that acetogenic sulfate reducing bacteria and acetoclastic methanogens coexisted in the anaerobic column, and in the anoxic column, the total relative abundance of anammox bacteria, including Candidatus Brocadia, which coexisted with heterotrophic denitrifying bacteria and sulfur denitrifying bacteria, was 17-18%. Thus, this study established the SRDAPN process as an energy saving and high removal efficiency process.


Assuntos
Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio , Bactérias , Reatores Biológicos/microbiologia , Desnitrificação , Nitrificação , Nitritos , Nitrogênio , Oxirredução , Esgotos/microbiologia , Enxofre , Águas Residuárias/química , Águas Residuárias/microbiologia
10.
Sensors (Basel) ; 18(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462930

RESUMO

Biochemical oxygen demand (BOD) is a widely used index of water quality in wastewater treatment; however, conventional measurement methods are time-consuming. In this study, we analyzed a novel flame-oxidized stainless steel anode (FO-SSA) for use as the probe of bioelectrochemical system (BES)-based biosensors to monitor the BOD of treated swine wastewater. A thinner biofilm formed on the FO-SSA compared with that on a common carbon-cloth anode (CCA). The FO-SSA was superior to the CCA in terms of rapid sensing; the response time of the FO-SSA to obtain the value of R2 > 0.8 was 1 h, whereas the CCA required 4 h. These results indicate that the FO-SSA offers better performance than traditional CCAs in BES biosensors and can be used to improve biomonitoring of wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...